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Item 20. ContInu ed

trainer was dec~~~iled. FIna lly, the data gathered from phase 2 was analyzed
to Identify language featur es appropri ate for some high-level , application-
or iented progra lng language.

The results of the decompl iat lon showed that a hybrId of FORTRAN including
bitust ri ngs and locator data was the most appropriate high-level language for
trai ner applications. p
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S
S1H~ARY

This report represents the results of a project in which d.compilatioa
techniques were used to identify the essential characteristics of a high-
level progra iug language suitab le for real-ti .. training device syst ems.

The project consisted of three phases . First , a deco mpiler , written in
10 1*AJ , was implemented to map assembly language for a Xerox SI(NI~-7
computer into a co llection of tables and data forming the basis for
Phase 3. Second , a structured collection of 33 modules r.prese tia$ an
operationa l system for an F4 trainer was decompiled . Finally , the data
gathered frau Phase 2 was analyzed to identify language feature s appro-
priate for some high-level , application-oriented progra ing language.

The results of the decompilation showed that in addition to featu res
typically supported in conventional scientific-oriented progra iag
languages, a language suitable for trainer systems similar to the F4
should include bit-string and locator data ; locator data is data that
indirectly references other data . It was found that dynamic data
structures and recursion were not essential whereas control mechanisms
like the IF-ThEN-ELSE, Zahn-loops , DO-WHILE and REPEAT-UNTIL were very
pro.iaeat and should be supported in such a language.
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PREFACE

1~~

The objective of this project ~.s to apply known and proven decosipil&tiOfl
techniques in an attempt to identify patterns and stru ctures within
assembly language source code that might suggest or cor respond to
familiar constructs found in many high-level progra ing languages .
This effort was novel in the sense that no one, to our knowledge, has
used deco mpilation as an approach to language design .

Several people were involved at various stages of this project and we
take space here to recognize those who shared in the effort . Dr. Terry
Frederick, Chairman of the Computer Science Department at the University
of Central Florida (formerly Florida Technological University), was co-
principal investigator on this project and acted primarily as project
administrator and consultant . Dr. Ron Dutton, also a faculty member in
the Computer Science Department, UCY, contributed to the progra ing
effort and provided support during the early stages of development .
Among the most dedicated contributors to this effort were Robert Larsen
and Spsidharan Nenon (graduate assistants at LICT) who shared most of the
progra ing and debugging effort and spent seemingly endless hours in
the computer lab running the deco mpiler. Finally , Tami Sona r, who joined
th. project near its completion, helped with debugging and progr am
dociaentatios. 5
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SECTION I

INTRODUCTION

CONTRACT OBJECTIVES

The primary objectives of this contract were to identify and formulate
the features of a hig h-level progra ing language suitable for imple-
menting aircraft trainer syste ms. The specification for such a language
was to be derived from data collected on research systems currently
operational at the Naval Iraining Equipment Center, Orlando, Florida .

METHODOLOGY AND BACKGROUND

Four design criteria determine to a large measure the features comprising
a high-leve l, application-oriented language . First , the language must
L uotain as primitive elements, those data types and data operations
intrinsic to problem s in the application area . Secondly, the language
should be “robust”; that is , it should allow sufficient variety of
constructs to make possible the precise representation of computations
and control structures frequently occurring in application problems .
Robustness is important because it gives the compiler writer more infor-
mation about the precise nature of a computation making possible the
generation of better object code ; this is particularly important in real-
time applications like those encountered in aircraft trainer systems. A
third criterion is the availability of features that add to the seif-docu—

W menting properties of the language ; features of this kind include
constructs that induce structure in the control and data flow. This
criteria is important because it increases readability , thereby, making
debugging and maintenance easier and .ore effective . Finally, the
language should be high in its expressive power; that is , it should
provide constructs permitting complex processes to be expressed
succinctly. Expressive power in a language increases progra er
productivity and tends to diminish his propensity for error.

The primary objective of this contract was to analyze an 74 trainer
system written in the assembly language, SYMBOL, for the Xerox SIGItA-7
computer. This analysis was to be carried out in an effort to gather
data sufficient to indicate the language constructs best satisfying
the design criteria described above . Because a high-level, applicati4 n-
oriented language was desired and because the F4 system was written in
assembly language, decompilation was a natural choice as an approach to
obtaining the desired data .

Decoapilation methods have been studied2and developed by Housel
1 and

have been used with success by Friedman in transporting operating

1. House , B.C. “A Study of Decompiling Machine Languages into Nigh-
Level Machine Independent Languages”, Tech. Report, CSD-TR-l0O,
Purdue University, 1973.

2. Friedman, F.L. “Decompilation and the Transfe r of Mini-Computer
Operating Systems”, Ph.D. Thesis, Purdue University , 1974.

5
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systems . Although complete decompilation of assembly language programs
is normally performed witS same predefined high-level syntax as a target ,
early stages of the deco.pilation process produce information that is
essentially language independent and helpful in indicating what high- 7
level constructs are present in the source program. In the next section,
we describe the decompilation process more fully , identify the typ. of
data gathered and show how this data was interpreted to suggest those
language features satisfying our design criteria.

H
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• 
S SECTION II

DECOIIPILATION APPLIED TO LANGUAGE DESIGN

DECOIIPILATION AND DATA GATHERING

The first phase of decospilation performs essentially the inverse function
of code generation in compilation; that is , symbolic machine or assembly
language is mapped “up” to an intermediate low-level language that is
largely machine independent . During this process statistics can be
gathered concerning the composition of the origina l source code with
regard to special operations , data types and addressing modes . This
information is most significant in determining the simple data types
that must be supported in the high-level language . Composite data

• structures like arrays , stacks , queues , linked lists , etc., are much
more difficult , if not impossible, to recognize during the first phase
of decompilation . Detection of more complex data types is possible only
by considering groups of instructions in combination with the control-
flow structure of the source code.

The second phase of decoupilation identifies code segments called
“blocks” and analyzes the control flow among blocks. The effect of
this phase is to reduce a program module to a “flow graph” so that high-
level control structures (e.g. FOR and DO loops , IF-THEN-ELSE) can be
identified. The structure of a flowgraph together with knowledge regard-• C ing the functional properties of program blocks can suggest the use of
complex data structures . Flow analysis can also identify regions of
the program absorbing relatively large amounts of execution time .
Information of this kind is extremely important in suggesting what
optimization techniques should be emplcyed and where they should be
applied.

The third phase of decompilation normally performs code generation
fro. the program’s flowgraph representation to high-level object code.
Since the high-level source language was an unknown, this phase of
decoapilation was not implemented. It was the primary objective of
this contract to determine the most important fe.istures of this unknown
language based on the data gathered by the first two phases of the
decompilation process. We , therefore , present in the following para-
graphs a detailed description of each of these decompilation phases ,
a su ary of the data collected in each phase and our conclusions
concerning this data .

• BLOCK GENERATION PHASE

• The first phase of decompilation was designed to accomplish the tol-
lowing objectives:

1) Identify and classify “blocks”;
2) Classify instructions and determine frequency distributions

S based on class ;
3) Determine a frequency distribution of addressing modes.

7
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BLOCK IDENTIFICATION AND CLASSIFICATION

A “block” is defined to be a sequence of instructions , I ,I ,.. . ,I
with I~ representing the only entry point to the sequenc~ Jd if fgr
some k, 1k is a transfer instruction (condition or unconditional), then

• I is a transfer instruction for each j>k. Furthermore, if is an
uatconditional transfer, then k=n. Each program module was decomposed
into blocks during the first phase of decompilation. An instruction, I
defined the beginning of a new block whenever I satisfied one of the
following conditions:

1) I represented an entry point to the module.
2) I was referenced by some instruction within the module.
3) I was a nontransfer instruction following a transfer

instruction.
4) I was the first instruction following a sequence of

instructions from which I could not be reached except by a
direct transfer.

Condition 4 is really subsumed by the others if the assumption is made
that no “dead” code is present in any module. To keep the decompiler as
general as possible , condition 4 was included.

Blocks fall into three functional categories. The first category repre-
sents all blocks that evaluate some condition prior to a logical decisior
point dependent upon that condition. Blocks of this type can be modelled
by the following high-level statements.

• A sequence of nontransfer statements

IF (EXPRESSION) GOTO L1
GOTO L2

I
The second category can be identifed as “loop initialization. ” Blocks

• in this category contain no transfer instructions themselves b’*t occur
just prior to a loop entry point.

LI 
_________

• __________ 
Loop Initialization Block

L2 
___________

Loop Body ()

GOTO L2

- - -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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S
The third category contains blocks forming the alternatives of an IF-
THEN-ELSE construct.

IF(EXPRESSION) GOTO Ll

__________ 
BLOCK 1 (“else” alternative)

_____________

GOTO L2
Ll 

__________

__________ 
BLOCK 2 (“then” alternative)

L2 
_ _ _ _ _

The functional classification of blocks becomes important in the deter-
mination of high-level conditional constructs and will be addressed in
the next subsection.

• In addition to identifying blocks, it was necessary to assign a “type”
to each block that would be useful during the second phase of decompi-
lation. Block type could be any value in the range 1 to 7 depending on
the particular combination of the following three properties exhibited
by a given block.

1) The block contained an entry point of the module.
2) The block contained module exit or return.
3) The next sequential block could not be reached except by

direct transfer.

Table 1 shows the correspondence between block type and the presence of
the attributes above. An “x” entry indicates the presence of an
attribute .

TABLE 1. BLOCK TYPE

ATTRIBUTES

1 2 3
• 0 

_ _  _ _

1 x — ____

2 
_____ ____

3 
____ 

z 
____

4 — z
5 

_ _ _  *
6 ~ i i Ex
1 * * *

9
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Block type was used not only for flow—structure analysis, but also for
determining whether or not the high-level objective language should
support a multiple-entry-point feature in the definition of subprograms
or procedures . The results of the decompilaton revealed the figures

• displayed in Table 2. This data was based on a total of 33 modules
analyzed .

TABLE 2. ENTRY POINT DATA

Number of
• Entry Points Frequency (No. of Nodules).

• • 1 22

2 3

> 2 8

Since 33 percent of the modules had more than one entry point , it was
apparent the multiple-entry feature should be included in the high-level
language . 5
INSTRUCTION CLASSIFICATION

• I The primary source of information used to identify primitive da#.a types
for the high-level languge (HLL) was the instruction class frequency
distribution. By carefully classifying the instructions of the SIGIIA-7 ,
we hoped to identify the use of one or more of the following data types.

I) integer
2) single precision floa ting point
3) double precision floating point
4) string
5) logical (true/false)
6) Boolean (bit—string)

• 7) stacks .

We have included “stacks” in this list because the SIGNA-7 has specific
instructions for manipulating stacks. Twenty-one instruction classes

• were selected in an attempt to identify the use of one or more o the
data types above .

1) Bit Operations/Non-Compare
2) Bit Operation/Compare
3) Byte Operations/Non-Compare
4) Byte Operations/Compare
5) Half-Word Operation./Non-Compare
6) Half-Word Operations/Compare
7) lull-Word Operations/Hon-Compare
8) lull-Word Op.ratioos/Compare

10
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S• 9) Double-Word Operations/Non-Compare
• 10) Double-Word Operations/Compare

11) Float-Short/Non-Compare
12) Float-Short/Compare
13) Float-Long/Non-Compare
14) Float-Long/Compare
15) Logical (OI,EOR,AJID)
16) Stack Operations
17) Branch-On-Condition
18) Branch-On-Count
19) Branch (Subroutine Linkage)
20) Miscellaneous

• 21) Exchange-Word.

Some coements are in order concerning the interpretation of some of these
classes . Class 1 consisted primarily of shift instructions and instruc-
tions that set hardware conditions . Class 3 consisted of byte-string
operations. Instructions in Class 5 were interpreted as indexing oper-
ations for loop control or for counting purposes. Classes 7 and 9
represent instructions used primarily for true integer arithmetic. Classes
11—16 are self-explanatory . Instructions in Class 17 were assumed to be
used for conditional logic and control of non-counting loops. Class 18
denotes instructions used primarily to control counting loops. Class 20
included instructions primarily pertaining to I/O handling. The lastC class, 21, consisted of the “exchange-word” instruction. This instruc-
tion interchanges or “swaps” two memory words . Forming a single class
from this one instruction was done to determine if a swap function
should be included as a syst,. function in HLL. Table 3 shows the
results of our analysis for the 33, F4-.odules. Percentages were based
on a total of 7,614 instructions .

TABLE 3. INSTRUCTION-CLASS FREQUENCY DISTRIBUTION

PERCENT* CLASS DESCRIPTION

49.3 7 Full-Word/Non-Compare
17.1 17 Branch-On-Condition
16.1 11 Float-Short/Non-Compare
5.5 19 Subroutine Linkage
4 9  8 Full-Word/Compare

V 2.5 1 Bit-Operation/Non-Compare
2.1 15 Logical
0.7 20 Misc. (I/O)
0.6 2 Bit Operation/Cor4are
0.5 18 Branch-On-Count
0.4 9 Double-Word/Non-Compare
0.2 21 Exchange-Word
0.0 All Other

*All percentages are rounded to nearest .1 percent.

• -1 11
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The rather high percentage of instructions in Class 7 can be explained
by noting that all full-word “load” and “store” operations belong to
this class. In addition , the absence of representatives from Classe~ 5and 6 suggest that indexing and counting was done using full-word
operations. Although a more definitive classification scheme could have
disclosed the precise composition of Class 7, it is clear that full—word
binary integers together with the standard arithmetic operations on
integer data must be supported in JILL. This proposition is further
supported by the presence of classes 9, 18 and 8.

Practically all computation was done in Class 11, suggesting JILL should
definitely support single-precison real arithmetic. In addition,
manual inspection of some of the modules indicated the need to support
all trigonometric functions as a standard part of the language. A very
surprising statistic was the total absence of classes 13 and 14.

Logical data was clearly indicated by the presence of Class 15 instruc-
tions. The surprisingly high frequency of Class 1 and 2 instructions
suggest some facility should be provided in JILL for defining bit-string
data and performing bit-string operations. Manual inspection of the
code indicated that most bit instructions were used to set and test
“switches.” Since approximately half the modules performed bit opera-
tions, it was apparent that bit data should be an essential feature
of JILL.

The results of instruction-class data suggest the following data
facilities should be supported in JILL.

1) Fixed-point integer data
2) Single—precision floating—point data
3) Bit variables and bit strings
4) Logical data
5) Arithmetic operations for Classes 1) and 2)
6) An Exchange-Word primitive function
7) Trigonometric pri.itive functions .

ADDRESSING NODES

The SIGMA-7 supports a variety of addressing capabilities . Five different
addressing modes were identified for the purposes of our analysis. They
are :

• 1) Direct or Absolute Addressing
2) Indexing via registers
3) Indirect addressing
4) A combination of 2) and 3)
5) lemediate

In addition to gathering frequency counts for these five addressing 0
odes within each instruction class , frequency counts were also main—

tam ed for “external” references in each instruction class. An “exterasi”
reference is a reference to a data item or instruction defined in as

12

___ -- • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 

•

~~~ ~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~ i



_•~ j J~ _ •

NAVTRAEQU IPCEN 77-C-0069-1

S
physically distinct module . In fact, of the 33 modules in the F4 soft-
ware, 2 modules were strictly data modules; that is, they contained no
executable instructions and served to resolve many of the external

• references made in other modules.

The presence of indexing usually suggests the use of array constructs
of one or more dimensions. Indirect addressing is typically used in
addressing parameters passed to a subroutine , returning from a subroutine
call and in accessing and modifying linked data structures like lists

• and trees. The presence of external references to data implies the
need for “global” data structures as provided by block structured
languages like ALGOL on P1/i, or “co on” data similar to that supported
by FORTRAN. Table 4 su arizes the statistics accumulated for addressing
modes.

• TABLE 4. ADDRESSING NODE STATISTICS

PERCENT OF INSTRUCTIONS
• (All Nodules)

DIRECT 64 .7%
INDEXING 5.1%
INDIRECT 1.3%
INDIRECT AND INDEXING 0.4%
IIHIEDIATE 5.5%
EXTERNAL 23.1%

Practically all instances of indexing in the F4 were for the purpose of
array addressing. Indirect addressing was used in three contexts :
First, in effecting a return from subroutine call; second, in accessing
parameters passed to a subroutine ; and finally, indirect addressing was
used to access external data via indirect references through other
external variables (sometimes with post-indexing). The first two uses
of indirect addressing represent standard linkage mechanisms for
invoking and returning from subprograms . The third use suggests the
addition of a new data type to the JILL which we shall call “locator”
data. A locator variable would take as its value the location or
address of some other data structure . To support the locator data
type would require including a unary address—operator that when applied
to a data structure or variable returns its address. Locator variables
would allow the building of linked data structures quite easily in JILL.

The high percentage of references to external data indicate a clear
need for the COIIION feature found in FORTRAN. Distinct data areas
independent of any particular module serving as a data coomunication
med~’.2a between two or more modules is to be desired over the parameter
passing mechanism. This is particularly true if the number of data
items co~~ anicated is relatively large. Extensive use was mad. of this
method of data co unication throughout the F4 system .

13 



—~~~~

NAVTRAEQUIpCEPI 77-C-0069-1 5
CONTROL FLOW ANALYSIS

The second phase of decompilation was designed to construct a flow
graph of the blocks identified in the first phase. In addition, statis-
tics were gathered on the frequency of instruction sequences. Inatruc-
tion sequences that computed the value of some expression were identified
within each block and a count of their frequency of occurrence was
maintained at both the block level and module level. It was hoped that
by accumulating instruction sequence data, we could identify simple
functions that should be supported in JILL. Unfortunately, the only
sequences that occurred with significant regularity were sequences

• - containing at most two operators. 
• 
The analysis did show that logical

expressions involving AND, OR and EXCLUSIVE-OR represented 4.63 percent
of all sequences identified. This was interpreted as sufficient evidence

• for support of these operators in JILL.

LOOP ANALYSIS

Perhaps the most interesting results were derived from the identifi-
cation and classification of “loop” constructs. Our purpose was to
classify all loops into 8 categorieg according to the number and
placement of loop termination points. The results would show in
addition to the type of loop constri~cts needed in JILL, the “natural”
frequency of occurraqce of single-eQtry, single-exit loops like those
proposed by Dii kstra

• A “loop” was defined as a sequence ~f blocks, B1, 82,..., ~~ satisfying:

1) B = B and no B other U~an B1(B ) occurs more than once.
• 2) C~ntro2 can reacA B1 from some mo~ule entry point without

• passing through any block in the sequence.
3) Control flow can pass from B~ to Bi+i, l~i(n.

Th. “head block” of a loop is always its entry block, B . The “tail”
of a loop is always the block B 

_~~~
. An “interior blockA is any block

other than the head or tail. *1 “exit” block is any block from which
control can directly pass to a block not in the loop. Table 5 clas-
sifies loops according to whether: 1) the head is an exit , 2) an
interior block is an exit, 3) the tail is an exit or some combination
of these possibilities. Note that type 0 loops represent infinite loops.

3. Dahl, O.J., Dijkstra, LW. and Hoare, C.A.R., Structured Progra ing, 5Academic Press , New York, 1972.
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TABLE 5. LOOP CLASSIFICATION

Attributes Present

1 2 3
Type 0 

_________  ____ 
Attributes:

I 
_ _ _ _ _ _  

x lzNead Exit
2 x 

_ _ _  
2 i n terior Exjt

• 3 x 
- x 3 Tail Exit

4 x 
_ _ _ _  _ _5 
_________ *6 x z 

_ _1 x x

The results of the loop classification were very interesting particu-
• larly because of the surprisingly low frequency of occurrence of the

DO—WHILE loops, Class 4, and the REPEAT-UNTIL Loops, Class I. Table
6 give s a complete su ary of the loop analysis data .
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TABLE 6. LOOP CLASSIFICATION DATA

Nodule No. of No. of LOOP DISTRIBUTION BY CLASS
Name Blocks Loops 0 1 2 3 4 5 6 7

4

AC! 106 0 - - - - - - - -
ACS 97 0 - - - - - - - -APL 41 15 - - - - - 3 2 1 0CIV 174 0 - - - - - - - -
CR1 141 0 - - - - - - - -
CTL 29 0 - - - - - - - -
DC 49 15 - - - 6 - 9 - -DEC 41 0 - - - - - - - -
DR 226 106 - 1 3 2 12 - 9 3 4 18
DRED 24 6 - - - 1 - 2 1 2
EGI 30 24 - - - - - - - 24
EPE 146 1 - - - - - - 1 -• ESE 48 0 - - - - - - - -
TIP 64 0 - - - - - - - -6 2 - - - - - 2 - -
FGJIV 38 12 - - - - - 12 - -
INTG 9 2 - 1 - - - 1 - - 0IT 40 1 - - - - - - 1 -
LCE 90 0 - - - - - - - -
LDE 14 0 - - - - - - - -LDCE 23 0 - - - - - - - -
LE 35 0 - - - - - - - -
11CC 41 1 1 - - - - - - -
NCG 5 0 - — - - - - - -
PlC 79 32 - 1 - - 2 4 1 24• RAG 1 0 - - - - - - - -
RTIO 9 2 - - - - - 2 - -
SIN 26 2 - - - - - 2 - -5$ 36 0 - - - - - - - -
STAR 31 13 — — 2 - — 8 3 -
TA 32 4 - - - - - 4 - -TAIL 1 0 - - - - - - - -
Totals 238 1 3 3 4 19 2 5 9 42 78

Based on the percentage of Branch-On-Count instructions in Table 3, the
number of counting loops was estimated to be 16 percent of the total
number identified.

Th. loop data suggests JILL constructs like those illustra ted below. The
“WHEW’ statement causes the inner-most loop containing it to terminate
with control being passed to the first statement following the corres-
ponding “LOOP” statement. Any number of WHEN statements would be
allowed within the body of a loop. A “counting” option is allowed only

e
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on the loop entry statement , DO, while both the WHILE and UNLESS
options are permitted on the loop-end statement, LOOP. “V” denotes a
counting variable. “A” denotes an arithmetic expression, while “L”

~~~~ denotes a logical expression. Optional clauses are indicated by square
brackets.

r v = Al~~~~ 
B Y A

31
DO 1l~~

h1(1u1) ILUNLESS (L1) J

WHEN (L2) LEAVE ;

O 
LOOP NILE (L3) 1

LUNLESS (L3)J

C0I(DITIOSIAL LOGIC

Analysis of the control-flow graphs produced by the decompiler showed
that only S out of 1,732 blocks had more than 2 successor blocks; each
of the 5 had 3 successors. Furthermore, 7 blocks consisted of a single
conditional branch instruction implying very few blocks had more than
3 successors ; the 7 single conditional-branch blocks were distributed
among 6 modules. A more detailed examination of single-entry/single
exit subgraphs with no internal loops showed that practically all
conditional logic could be represented by IF-THEN and IF-IHEW-ELSE
constructs with compound THEN and ELSE clauses . Another high-level
construct that occurred with high frequency was the conditional GOTO.

17
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SECTION III

CONCLUSIONS

We suamarize our findings by eni~ erating those features characterizing 4
a high-’evel language (JILL) suitable for developing applications soft-
ware for aircraft trainer systems similar to the P4. Many of the
features we identify are co on to many conventional progra ing
languages. These include integer data, floating point data and the
usual set of arithmetic operators that apply to these data types.
Logical data and the logical operations of “AND”, “OR” and “NOT” were
also found to be necessary features in JILL. Static array structures
and COMMON data areas, like those found in FORTRAN, are also necessary
elements of JILL. JILL should also support facilities for permitting

• different data structures to share the same storage area; a facility
like the EQUIVALENCE concept in FORTRAN would be appropriate. Because
of the relatively heavy use of tabular and simple data that were constant
or “read only” data structures, some facility •ust be provided in JILL for
initializing variables and arrays at compile or load time. Facilities
for defining procedures and functions with multiple entry points were
also found to be desirable ingredients of a language designed for trainer
systems . Although the GOTO construct must be included in JILL, its use
within the P4 software was very seldom found to be the result of 0“irresponsible style” on the part of the progra er.

For the most part, the features we have listed above ire co on to a
• oi~~er of popular high-level progra ing languages. We complete our

si ary of the properties ascribed to JILL by discussing in a little more
detail those features that were very prominent in the P4 software, but

• were unusual in some respect and therefore of special interest as a
result of this research.

DATA STRUCTURES

Add LOCATOR and BIT(n) as new data types, where “n” denotes the length of
a bit-string variable. LOCATOR variables take on values that represent the
location or address of some other data item. LOCATOR variables can be
typed, dimensioned, equivalenced, placed in COIIION or passed as parameters
just as any othex variables. BIT variables can be equivalenced to other
variables .

• DATA OPERATIONS

While both LOCATOR and BIT variables should be allowed in mixed mode
expressions (where they should be treated as INTEGER data), distinct
operations should be provided for each type. An ADDR built-in or system
function should be available returning the location of its argument.
Operations like .AND., .NOT., •OR . and EON. should be available for BIT
variables. A system function should also be provided for exchanging the
values of two variables .

• 18
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CONTROL STRUCTURES

A loop—construct like the one illustrated below consists of a “DO” 
• 

• -

statement having an optional clause with three distinct forms together
with a corresponding “LOOP” statement also having an option with two
alternative forms. Within the loop body, at the same nesting level, can
be any number of “WHEN” statement.. Form 1 of the DO statement is for
creating a counting loop with “V” denoting a control variable and A,, A,,
and A1 denoting arithmetic expressions. In Forms 2 and 3, “WHILE” takel
a logical expression defining a condition for entering the loop body,
whereas “UNLESS” takes an expression defining a condition for terminating
the loop. The WHEN statement defines a condition for loop termination
and causes control to pass to the statement i ediately following the
LOOP statement if the condition is met.

DO Iv = A1, A2, (A ii
IWNILE (E)

CE)

WHEN (E) LEAVE

roopfw,nrz (~) 1LuwLEss (E)J

0 In addition to a new loop construct, it would be desirable to have condi-
tional constructs like IF-THEN or IF-THEN-ELSE with compound clauses. The
IF-THEN statement wiald introduce a group of statements to be executed
only if the logical expression “E” is “true.” The statement group would
be terminated by a matching “ENDIF” or “ELSE” statement. An occurrence
of the “ELSE” would signal the beginning of another statement group to be
executed only if “E” is “false.” The ELSE group would be terminated by
the ENDIP. The IF-THEN and IF-THEN-ELSE constructs could be nested to
any depth.

IF CE) THEN

__________ 
THEN-group

ELSE

_________ 
ELSE-group

ENDIF

S
19
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INPUT/OUTPUT

• While some evidence existed within the decompilation data suggesting
facilities should be provided for handling I/O interrupts, it is no~ clea~
that input/output handling at this level should be supported in HLL; this
function is iao~t appropriately performed within the operating system. A
compromise would be to allow JILL system functions that could check for the
occurrence of various kinds of interrupt conditions, returning control
only if the condition occurred or had not occurred .

SUMMARY

Real-time programs must be efficient in their use of processor time. Pro-
gra ing at the machine level is one way to guarantee a certain level of
performance. Programaing real-time applications in a high-level language
has obvious advantages, but if performance of the object code is of para-
mount importance, the choice of language or language features probably has
only secondary effects. Using good programsing techniques and employing a
good optimizing compiler will most probably have the greatest impact on
performance.

While this project has sought to identify those features essential to a
high-level language suitable and “natural” as possible for implementing 3real-time trainer systems, it has not determined the degree to which
language design effects the ultimate performance of such systems. The
question of design effectiveness remains open and represents an area of
further research.

S
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• SECTION IV

RECOIIIENDATIONS

The decompilation approach to designing a high-level language for trainer
applications has been fruitful and has produced some unexpected results .

I Nevertheless, it is difficult to evalute the success of this approach
after having applied it to only one system, the P4. Further studies are
needed e~~loying this technique with other types of trainer programs.In addition, a formal specification of JILL should be developed along with

-
- a co~~iler using a variety of optimization algorithms. Only by comparing

the performance of compiled, unoptimized and optimized JILL code with the
• original handwritten machine code can we determine the most significant

• factors in writing and maintaining high-performance trainer application
- systems.

: 0

a
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GLOSSARY

— addressing mode: the process by which a memory operand is located or
fetched for a given machine instruction .

bit—string : a sequence of binary digits treated as a single unit. or
operand in some operation.

block: a sequence of machine instructions whose only entry point is the
first instruction and for which any transfer instructions occur at
the end of the sequence.

branch-on-condition: a type of conditional transfer or “jump” instruction
that is based on the setting of hardware condition flags preset by
the execution of an earlier instruction.

branch-on-count : a type of conditional transfer or “jump” instruction
based on the value of some counter normally held in a register.

compiler: a process or processor designed to translate procedures written
in a source language to equivalent procedures expressed in machine
or assembly language.

C control structure: a progra ing language statement or group of state-
ments designed to determine the flow or sequence of executable
expressions .

deco.pilation: the inverse process of compilation; that is, translating
machine or assembly language procedures into a language that is more
programser oriented.

entry point: the location to which control is passed to execute or acti-
vate a program module or block within a module.

exit block: a block within a loop from which control can leave the ioop.

• external reference: a reference, either fetching an operand or transfer-
ring control, generated in one module but resolved to or satisfied • -

by another module
• 

, -

flow graph: a collection of nodes connected by directed arcs. Nodes
correspond to program blocks. The arcs define the blocks i ediately
accessible from a given block.

global d.ta: data that is accessible in one module but not defined within
that module.

head block: the block containing the entry point to a loop.

S i ediat.e addressing: the method of fetching an instruction operand whose
value forms part. of the instruction being executed .

23
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indexing : the use of registers in adjusting or computing an addressable
location in memory that varies during the execution of a program
segment .

indir~ct referer.ce: a reference to a data item or instruct t~n operan !
obtainci by fetching the value of another memory location holding
the reference address.

interior block: any block ~iithin a loop other than the head or tail blocks.

loop: a sequence of instructions or blocks that can be repeatedly executed
as a result of the control flow structure of a module or program.

module: a group of program statements performing a specific function with-
in the logica l organization of a program.

parameter passing : the mechanism or processing convention used to transmit
a set of data items from one module to another where the specific s~t
of items say vary from one call of that module to another.

source code: a program written in a given language serving as the input
to be translated by a compiler or~decospiler.

subroutine linkage: the instruction sequence executed to transfer control
from one module to another.

syntax: a finite set of rules describing bow to construct programs
expressed in a given language.

tail block: the block last executed before the head block within a loop .

.
a
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